
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Market Leader in Mechatronics and Detailed Design Engineering Services   |   simplexitypd.com 

 

https://www.simplexitypd.com/


INTRODUCTION 

Embedded systems are in millions of products that we use every day. It’s easy to take it for granted that 

you can unlock your front door from your phone remotely and that your watch keeps track of the number 

of steps you take and your heart rate profile. But you don’t want other people to be able to unlock your 

door or see your heart rate profile, or to hack into your home Wi-Fi. In other embedded systems, such as 

medical devices or industrial control systems, security breaches can have more serious consequences.  

In fact, it is so important that in the White House’s recently released National Cybersecurity Strategy, 

developing security into IoT devices is highlighted as one of the strategic objectives. Additionally, the 

strategy proposes to shift liability for insecure products and services from the consumer to “those entities 

that fail to take reasonable precautions to secure their software”. Europe, too, will soon release 

regulations to require manufacturers to protect internet connected devices from unauthorized access.  

The motivation to consider security in all appropriate embedded devices couldn’t be clearer. Yet, security 

is an area that has been neglected for too long for embedded systems. And what exactly does security 

mean for embedded systems?  

In this whitepaper, we will explore the following: 

1. A proven process and methodology to enable development of secure IoT devices.     

2. What it takes to analyze a real system for security issues, and how to manage mitigation of any 

identified security issues.   

3. Several coding practices that can avoid introducing many of these security issues in the first 

place. 

 

1. USE A DEVELOPMENT PROCESS FOCUSED ON SECURITY 
We first look at a process that provides methods to support the development of a secure IoT device. This 

process encourages appropriate security activities to be followed throughout the product development 

process. This will help to ensure the appropriate analyses and techniques are used during development, 

which will help identify and mitigate security vulnerabilities in a cost-effective manner. 

A Secure Software Development Lifecycle (SSDL) is a software development methodology with security 

activities at each stage of development. The key objectives of an effective SDL include identifying 

potential security risks and vulnerabilities early in the development process, defining and implementing 

security requirements, and integrating security testing and validation into every stage of development. By 

following a well-designed SDL, software developers can reduce the risk of security vulnerabilities and 

improve the overall security and quality of the software they produce. This can help to prevent data 

breaches, protect user privacy, and ensure that software systems are reliable and trustworthy. 

Microsoft’s Security Development Lifecycle (SDL) provides an excellent resource when creating a process 

for secure system design. Though not specific to embedded systems, the guideline’s principles apply 

across any industry. The Microsoft SDL uses the following criteria to determine whether development of a 

device should follow a Secure Development Lifecycle.  

- Will the system be deployed in a business or enterprise environment? 

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act


- Does the system process personally identifiable information or other sensitive information? 

- Does the system communicate regularly over the Internet or other networks? 

If any of the above answers are yes, then development should follow a Secure Development Lifecycle. 

Embedded systems routinely satisfy the above considerations, especially as related to network 

communications, so we must be serious about incorporating security into our development processes for 

embedded systems.  

The following sections describe how Microsoft’s SDL fits into a standard product development process. In 

this example, we are using Simplexity’s phase-based Product Development Process although other 

product development processes can be employed in a similar fashion.  

 

Phase 1 Requirements and Planning 
During Phase 1, as we begin considering our project and software development plans, we must also begin 

planning the security approach. Key questions include: Is security applicable for this product? What level 

of security training is needed for the team?  

The team should determine what quality standards to hold the firmware to. For example, here at 

Simplexity, we don’t allow a branch to be merged to the mainline until it passes its static analysis checks 

and automated unit testing. In addition, we adhere to established coding standards which define 

practices that avoid common weaknesses and vulnerabilities.  

We quickly turn to requirements gathering, including requirements related to security, and document 

them in the Product Requirements Document (PRD). Because security impacts fundamental architectural 

decisions, it is essential to define security requirements during Phase 1. These requirements also impact 

the definition of milestones and schedule, feeding back into the development plans. 

 

Phase 2A Architecture and Feasibility 
As an input to the software architecture being developed during this phase, we need to perform a risk 

assessment of the security and privacy of the application. This risk assessment follows a similar process to 

a medical device risk assessment except that we’re considering the probability and impact of known 

threats rather than harm to a patient.  

We derive the software requirements specification (SRS) from the product requirements specified in 

Phase 1. In addition to specifying the features of the firmware application, the SRS must also describe 

how to implement functionality provided by a particular feature in a secure fashion.    

These requirements must be reviewed to ensure that they accurately and completely describe the 

intended use of a feature as well as describing how to securely utilize the feature. As with the Product 

Requirements, it is important to specify security features before making architectural decisions that limit 

your design options. Security specifications may drive critical architectural decisions such as processor 

selection, memory size, and communication technology (e.g. Wi-Fi, Bluetooth) that must be made during 

this phase.  

https://www.simplexitypd.com/resources/product-development-process/
https://www.simplexitypd.com/11-steps-to-performing-a-robust-product-risk-analysis-copy/
https://www.simplexitypd.com/11-steps-to-performing-a-robust-product-risk-analysis-copy/
https://www.simplexitypd.com/blog/applying-a-risk-based-approach-to-qms-processes


Threat modeling is the process of identifying potential threats to a system, determining the likelihood and 

potential impact of those threats, and identifying countermeasures to mitigate the risks. This process 

provides a foundation for understanding the potential attack surface of a system and the types of attacks 

that may be possible. Threat modeling will be discussed in more detail below.  

Once potential threats have been identified through threat 

modeling, we turn our focus to attack surface reduction. 

Attack surface reduction aims to limit the ways in which an 

attacker can gain access to or compromise the system. These 

strategies can be designed to specifically address the potential 

threats identified in the threat modeling process. 

This phase is also where we decide on the tools used for the 

project. Simplexity has a default codebase and set of tools and 

processes used, but at times clients have specific tools 

preferences. In terms of security, this is when we define the 

tools and security checks that will be used for the remainder of 

the project. Detailed design and implementation cannot 

proceed without development tools in place.   

 

Phase 2B/2C detailed design and implementation 
While the hardware team works on the detailed design of the 

first prototypes, the firmware team iterates through the 

design-code-test cycles for each feature, including security 

features. Detailed design fleshes out the details outlined in the 

architecture—the details of the requirement to do secure boot 

can be ironed out in this phase, for example. As each feature is 

implemented, it should also be unit tested. The unit testing is 

as automated as possible.  

At this stage, the team must review functions and APIs being 

used and prohibit any functions that are determined to be 

unsafe for that application. For example, if the project is 

avoiding dynamic allocation, printf may not be allowed since 

many implementations allocate memory. Using header files to 

list banned files and replacements (e.g., banned.h, strsafe.h), 

allows the compiler to check for the existence of those 

functions and use a safer implementation. We will highlight 

some techniques for writing secure C/C++ code later.  

Static analysis should be performed on the source code. Static analysis can catch errors in the code such 

as buffer overflow and can help ensure that secure coding policies are being followed. At Simplexity, 

static analysis is a standard part of our continuous integration process. The tool is enabled at the 

beginning of a project, and a release cannot be completed until the static analysis checks pass.  



Of course, static analysis does not replace a manual code review. Most modern tools such as GitHub or 

Atlassian’s Bitbucket can be configured to require a code review, which happens within the tool, before 

merging a change to the main branch of code. Code reviews are best practice in general and are an 

important tool in ensuring secure code.  

At this point the team has performed static analysis and unit and integration testing, so now attention 

must turn to doing run-time analysis and testing of the whole system to prove that it works as defined in 

the requirements. In addition to executing tests against the requirements, we use run-time dynamic 

analysis tools such as Percepio’s Tracealyzer, which enables the developer to monitor CPU and memory 

usage. This type of analysis helps identify vulnerabilities related to memory leaks, buffer overflows, stack 

overflows or side-channel timing attacks.  

Fuzz testing is a type of dynamic program analysis that involves providing invalid or unexpected inputs to 

an application to see how it responds. The goal is to identify any unexpected behavior or crashes that 

may indicate a security vulnerability. The intended use of the device along with the functional 

requirements drive the specific fuzz testing strategy for a particular product. 

By the end of Phase 2C, the firmware is feature-complete, including security features. Engineering level 

testing, including unit and integration testing, dynamic program analysis is complete.  

 

Phase 3 verification and transfer to manufacturing 
By Phase 3, the implementation is complete, and significant engineering testing has been completed. The 

system verification test protocols should be complete and ready to execute, so that we can have formal 

documentation of our test results. Before system verification, the software team prepares a candidate 

release build, which will be the version used for the testing.  

This phase is also the appropriate time to work with our clients on a software maintenance plan, which 

for security, needs to include an Incidence Response Plan. As technology changes, new threats arise, even 

for applications with no known vulnerabilities when they were released.  Most likely the clients will take 

on this responsibility, but the most important thing is for the responsibility to be identified. The plan 

identifies the sustaining engineering team, who to contact in a security emergency, on-call contacts, and 

security servicing plans for third-party code.  

A Final Security Review (FSR) is a process of evaluating and verifying the security measures that have been 

implemented in a system or application before it is released or deployed into production. It should be 

performed during Phase 3 and happens before the official release of the firmware. A security advisor, 

along with other stakeholders and developers, reviews the security activities completed during the 

project. The team will review the threat models, change requests, tool output (such as static analysis 

output), and performance compared to the quality standards agreed upon in Phase 1. The results of the 

review are one of the following: 

- Pass – All known security and privacy issues have been solved. 

- Pass with exception – There are some remaining issues to be resolved in the next release. 

- Fail with escalation – The security team cannot approve the release in its current form. The team 

must address critical issues and reassess in another FSR or escalate to management. 

https://percepio.com/tracealyzer/gettingstarted/
https://en.wikipedia.org/wiki/Side-channel_attack


At this point, the firmware has been through functional verification as well as passed security tests such 

as fuzz testing. If the Final Security Review passes, the candidate release, including release notes which 

contain lists of known issues, new features, and defects fixed in this version, can be formally released to 

manufacturing. All relevant information is packaged up and archived, including the specifications, source 

code, executables, and documentation.  

The goal of a Security Development Lifecycle is to integrate security into the software development 

process from the very beginning, rather than treating it as an afterthought. The SDL aims to ensure that 

security is considered at every phase of the software development lifecycle, from architecture to release 

to manufacturing, and that appropriate security measures are implemented and tested thoroughly. Now 

that we understand the process for developing a secure product, let’s look at how to model the product 

under development with the goal of identifying and mitigating security threats. 

 

2. MODEL YOUR SYSTEM TO IDENTIFY SECURITY THREATS 
Threat modeling is a process for identifying critical assets within a product, discovering potential threats 

to those assets, evaluating the likelihood of the threat, and defining security requirements to mitigate the 

threats. 

We will explore the process of creating a threat model for a simple, fictitious product. We will use the 

Microsoft Threat Modeling Tool to create our threat model. 

Product Definition 
Our product will be a simple remote temperature sensor, known as TS1.  The device consists of two 

physical parts – a hub with BLE and Wi-Fi capabilities and a temperature sensor with BLE capabilities.  The 

sensor will monitor the temperature and send the temperature reading over BLE to the hub.  The hub will 

store a history of temperature readings and respond to requests from a phone app for temperature data 

over Wi-Fi.  We won’t delve into the detailed requirements here, but instead make some basic 

assumptions about the BLE and Wi-Fi interactions between devices.  Both transports are frequently found 

in IoT products, so understanding the security implications inherent with their use is important. 

To begin, it’s helpful to identify some properties of the product: 

• What are the external dependencies? 

• What are the entry points? 

• What are the components of the system? 

What are the trust levels between these components? 

In our example, we have several external dependencies: 

• Mobile app 

• Network infrastructure to support the Wi-Fi connection 

We also have several entry points: 

• BLE interface 

• Wi-Fi interface 

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling


• Temperature sensor 

 

Data Flow Diagrams and Threat Identification 
When these properties have been identified, you can then draw a high-level data flow diagram (DFD), 

showing the components and the trust levels between these components. 

For TS1, a high-level DFD may look like this: 

 

In our diagram above, we’ve used the following elements: 

• Processes - Circles 

• Data Stores – Squares with the bold top and bottom edges 

• External Interactor – Squares with all four edges bold 

• Data Flow – Solid black arcs 

• Trust Boundary – Dashed red arcs 

The high-level DFD defines the scope of the product.  It clarifies how data flows through the system as 

well as how it changes as it flows. Using the high-level DFD as a reference, we can then iteratively 

decompose the application into multiple processes.  As we generate lower-level DFD’s of the system, we 

will continue to iterate and refine on the external dependencies, entry points, and trust levels. A low-level 

DFD for TS1 may look like this:  



 

Selecting the “Analysis View” under the View menu results in 36 threats identified.  A report can also be 

generated which details each threat. 

The Analysis View of our low-level DFD for TS1 looks like this: 

 

As each threat that is identified is analyzed, the Status field can be updated to indicate the current state 

of this threat.  The Status field defaults to “Not Started”.  Other options are “Needs Investigation”, “Not 

Applicable”, or “Mitigated”. 



As you continue to investigate threats, you may discover missing diagram elements.  As these are added, 

new threats may be identified.  For instance, the entire firmware update process was overlooked in our 

initial analysis.  If we add this to our low-level diagram DFD, it may look like this: 

 

When we re-run the threat analysis, we now have 62 threats identified. 

 

Investigate Threats 
Now that we have a list of potential threats, the next step is to investigate each of them.  You may decide 

that some threats are not applicable, others are addressed by the current implementation, and yet others 

will require changes to mitigate the threat.  In any case, each threat should be reviewed, and its status 

updated. 

Let’s take a closer look at one of the threats identified by the tool.  Threat ID 181 identifies a potential 

threat to the BLE Config dataflow between the BLE Central and the BLE Peripheral.  The description of this 

threat says: 



Data flowing across BLE Config may be sniffed by an attacker. Depending on what type of data an 

attacker can read, it may be used to attack other parts of the system or simply be a disclosure of 

information leading to compliance violations. Consider encrypting the data flow. 

Not only do we get a description of the threat, but also a potential mitigation.  By encrypting the 

communications between the BLE Central and the BLE Peripheral, we can prevent an attacker that is 

sniffing this connection to gain any useful information, other than the timing of our communications.  If 

an attacker is using a tool such as Wireshark to eavesdrop on the communications between the BLE 

Central and the BLE Peripheral, none of our data will be exposed.  We’ll plan to enable encryption on the 

BLE link and consider this threat mitigated.  Add this plan to the Notes field of this threat and change the 

Status to Mitigated. 

One down, 61 to go! 

Once all threats have been reviewed and mitigation measures identified for each, you’ll have made 

significant progress on developing a secure temperature sensor.   

We’ve highlighted the importance of identifying external dependencies, entry points, and system 

components, as well as establishing trust levels between them. We’ve developed multiple levels of data 

flow diagrams using the Microsoft Threat Modeling Tool, which in turn has identified potential threats to 

our temperature sensor. We’ve reviewed each threat and developed appropriate mitigation strategies for 

each threat. But the work doesn’t end there.  Systems are rarely static.  External dependencies may 

change, and most products go through multiple revision cycles.  The threat model should be reviewed on 

a regular basis to identify new potential threats and adapt to changing environments.   

 

3. AVOID INTRODUCING SECURITY THREATS 
Embedded systems predominantly use C and C++ for the firmware. Some common coding mistakes in 

those languages can lead to security vulnerabilities that can be exploited by an attacker. We will discuss 

five primary vulnerabilities, their possible use by an attacker, and ways to mitigate these problems.   

 

1. Buffer overflows 
Buffer overflows occur when a program writes more data into a buffer than its allocated size, leading to 

memory corruption. Attackers can exploit this vulnerability to overwrite adjacent memory and execute 

arbitrary code. Buffer overflows are a significant concern in C and C++ due to the manual memory 

management they offer. 

To mitigate buffer overflows, developers should avoid using unsafe library functions. strcpy and even 

the safer strncpy should be avoided. Although strncpy is safer than strcpy, it can still lead to 

vulnerabilities. strncpy will limit the number of characters copied, but there is no guarantee that the 

destination string will be NULL-terminated.  

Use strlcpy instead. This function limits the number of characters copied to one less than the number 

requested and also NULL-terminates the end of the destination string.  Both of these qualities are crucial 

to ensure that data fits within the allocated buffers and that subsequent calls to strlen do not cause 



vulnerabilities. The return value from strlcpy should still be checked to verify that the destination 

buffer was large enough to hold all the characters. 

if (strlcpy(dst, src, size) >= size) { 

    // Handle loss of data error! 

} 

String format functions, such as sscanf and sprintf, are also potential sources of buffer overflows. 

There is no size check on %s which could cause overflow. In the statement, 

sprintf(str,“%s”,src), src is interpreted as the format string, and there is no check on its 

size. A malicious string could be entered such as “%182d”, causing overflow. To mitigate these issues, it is 

better to include the field widths, use the safer snprintf function, and check the return value to 

determine the number of characters written.  The statement above could be re-written more safely as 

follows: 

char str[16];  

char *src; 

 

if (snprintf(str, 16, “%16s”, src) >= 16) { 

  // Handle string not terminated error! 

}  

 

Note also that there is a safe version, sscanf_s, in C11 Annex K, which does run-time size checking. 

Additionally, memcpy and memmove should be avoided in favor of the “safe” versions, memcpy_s and 

memmove_s. Each includes an additional parameter specifying the maximum number of bytes to copy.  

These functions are also part of C11 Annex K. 

 

2. Integer vulnerabilities 
Integer vulnerabilities arise from improper handling of integers, leading to overflows, underflows, or 

unexpected behavior. These vulnerabilities can result in data corruption, crashes, or even security 

breaches. 

To mitigate integer vulnerabilities, developers should perform input validation and properly check for 

boundary conditions. It's crucial to use appropriate data types with sufficient range to accommodate 

expected values and avoid undefined behavior. Static analysis can detect many integer errors and should 

always be used in a secure embedded system.  

In this case, using a signed rather than unsigned int for the size of our buffer can result in unexpected 

behavior. 

void myCopy(char *dest, char *src, int bufLen) 

{ 

    int maxBufLen = 20; 



    if (bufLen < maxBufLen) { 

        strncpy(dest, src, bufLen); 

        // If bufLen == -1, we just copied ~4 billion bytes! 

    }  

} 

3. Concurrency issues 
Concurrency issues arise when multiple threads or processes access shared resources simultaneously 

without proper synchronization. These vulnerabilities can lead to race conditions, deadlocks, or data 

inconsistencies. 

Concurrency issues are among the most difficult classes of problems to debug. Several techniques can 

help from introducing these issues in the first place: 

• Understand your system well enough so that you know what thread of execution each part of 

your code runs on.  Note that you may have functions that can run on multiple threads, including 

interrupt threads.  These areas should be reviewed closely for concurrency issues. 

• Avoid the use of global variables whenever possible.  The use of global variables increases the 

chances of introducing a concurrency defect. 

• Use the “volatile” qualifier when declaring variables that can be accessed from multiple threads 

of execution.  

• Consider the need for protecting reads and writes to each global and volatile variable with some 

form of concurrency protection. 

To address concurrency issues, developers should use thread-safe synchronization mechanisms, such as 

mutexes, semaphores, or condition variables, to protect critical sections of code. Proper design, utilizing 

thread-safe data structures, and avoiding unprotected shared data access can ensure data integrity and 

prevent conflicts among concurrent executions. Thorough testing and stress testing with simulated 

concurrent scenarios can help uncover and address potential concurrency vulnerabilities. 

 

4. File system vulnerabilities 
File system vulnerabilities occur when file operations are not properly handled, leading to unauthorized 

access, file tampering, or information disclosure. C and C++ provide low-level access to file system 

operations, making it essential to handle them securely.  

Embedded systems frequently interact with external storage or file systems for data logging, 

configuration files, or firmware updates. File system vulnerabilities can expose the system to 

unauthorized access, data corruption, or malicious code injection.  

To mitigate file system vulnerabilities, developers should carefully validate user input and enforce proper 

file permissions to restrict unauthorized access. Careful input sanitization, utilizing MCU-specific secure 

file APIs, and adopting the principle of least privilege can help prevent file system vulnerabilities.  Data 

read from a file should be treated as untrusted until it has passed an integrity check. Always test for 

errors whenever files are opened or read. 



Utilizing secure file system APIs and implementing secure file handling functions can help prevent 

common file system attacks such as path traversal or directory traversal. Employing cryptographic 

techniques like digital signatures or secure boot mechanisms can ensure the integrity and authenticity of 

firmware or software updates for embedded systems. 

 

5. Inadequate error checking 
Inadequate error checking refers to the lack of proper validation and handling of errors during program 

execution. This can have severe consequences, including system failures or safety hazards. Ignoring or 

mishandling errors can result in unexpected behavior, leaving the system vulnerable to security breaches 

or unreliable operation. For example, unhandled exceptions can be used as Denial-of-Service attacks, or 

error messages may give attackers insights to the program’s implementation.  

To address inadequate error checking, developers should diligently check return values of system calls, 

library functions, and input validation routines. Robust error handling, including graceful degradation, 

appropriate error messages, and logging, is crucial in embedded systems to provide meaningful 

diagnostics and facilitate troubleshooting. Employing techniques like watchdog timers can help detect 

and recover from critical errors or system failures. 

Developers working with C and C++ must be aware of common coding vulnerabilities to ensure the 

security and reliability of their applications. By understanding and addressing buffer overflows, integer 

vulnerabilities, concurrency issues, file system vulnerabilities, and inadequate error checking, developers 

can implement best practices to strengthen the security of their code. Regular code reviews, adherence 

to secure coding guidelines, and utilizing tools like static analyzers can further enhance the resilience of C 

and C++ applications against potential exploits. 

 

CONCLUSION 

We have shown how the key principles of Microsoft’s SDL can be integrated with a typical product 

development process to reduce security vulnerabilities and improve product quality.  We also explored 

what it takes to perform threat modeling on the product to identify and mitigate specific security threats.  

Finally, we explored some best practices during coding to avoid introducing many of these security issues. 

Ensuring security in an embedded device is an ongoing process.  Even if you have diligently followed the 

steps outlined above during development, your product may still be exposed to security risks.  The threat 

landscape is always changing, and your device will be exposed to new threats after shipping that were not 

identified or didn’t exist during development. Be prepared to handle security issues that arise in the field 

and be responsive to fixing those issues as they arise.  Doing so will enable you to stay one step ahead of 

hackers trying to attack your device. 

 

 



ABOUT THE AUTHORS 
Katie Elliott is the Director of Firmware & Quality Engineering at Simplexity Product Development working 

out of the Seattle office. She has a BS and MS in Electrical Engineering from the University of Washington.  

Katie has over 20 years of experience writing software and firmware for embedded systems, with a 

recent focus on connected medical devices. 

Brian Peavey is a Principal Firmware Engineer at Simplexity Product Development. He has a BS in Electrical 

Engineering from the University of the Pacific.  Brian has 40+ years of experience writing firmware for a 

wide range of applications, with a focus on firmware infrastructure, low-level drivers, and connected IoT 

devices. 

 

To LEARN MORE about Simplexity, review Simplexity’s Product Development Process or contact them 

about your next design engineering project. 

http://www.simplexitypd.com 

 

 

https://www.simplexitypd.com/resources/product-development-process/
https://www.simplexitypd.com/contact/
http://www.simplexitypd.com/

