

BEST PRACTICES IN MEDICAL DEVICE SOFTWARE & FIRMWARE DESIGN

NSF

NSF-ISR Registered to

ISO 13485

Katie Elliott, Expert Firmware Engineer Dorota Shortell, CEO January 14, 2021

PRESENTERS

Katie Elliott

- Expert Firmware Engineer
 - Simplexity Quality Lead

Dorota Shortell

- CEO

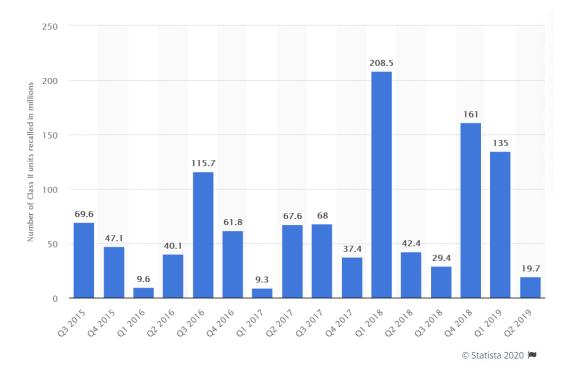
AGENDA

- Motivation for software process
- Phase-based device and software development
 - Planning and Requirements
 - Architecture and Feasibility
 - Safety classifications
 - Risk Analysis
 - Detailed Design
 - Design Verification and Transfer
- Case Studies
- Best Practices Summary
- Q&A

FAILURES DUE TO SOFTWARE BUGS

- Toyota unintended acceleration
 - Source code analysis
 - Memory corruption
 - Thousands of global variables
 - Overly complex, untestable, and unmaintainable functions spaghetti code

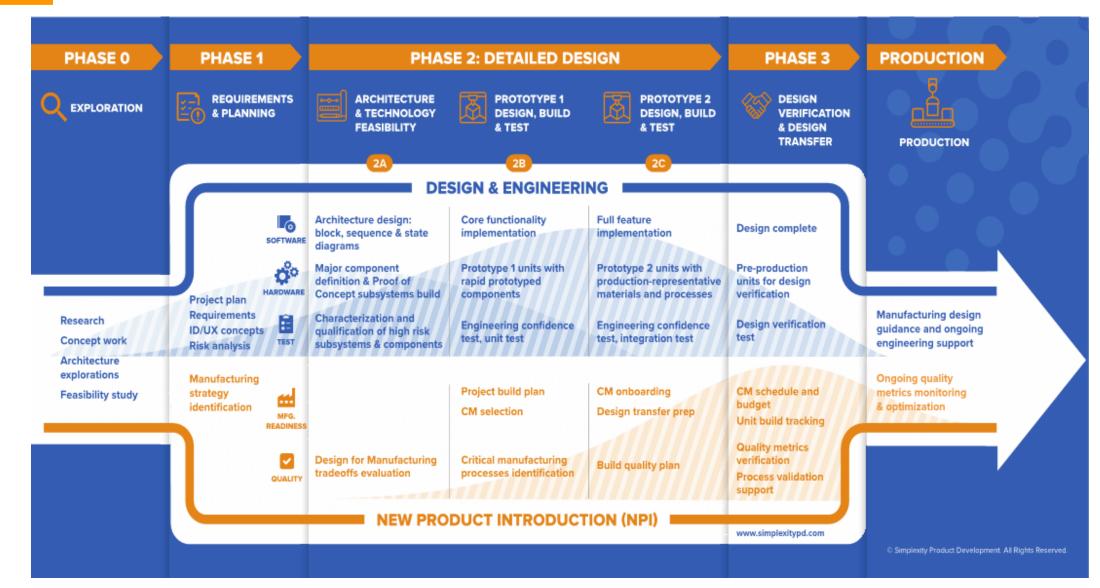
- Inadequate software engineering process
 - Failure to use automotive software reliability coding standards
 - Failure to follow even Toyota's inadequate rules
 - Safety not considered during design
 - No peer/code review


SW FAILURES IN MEDICAL DEVICES

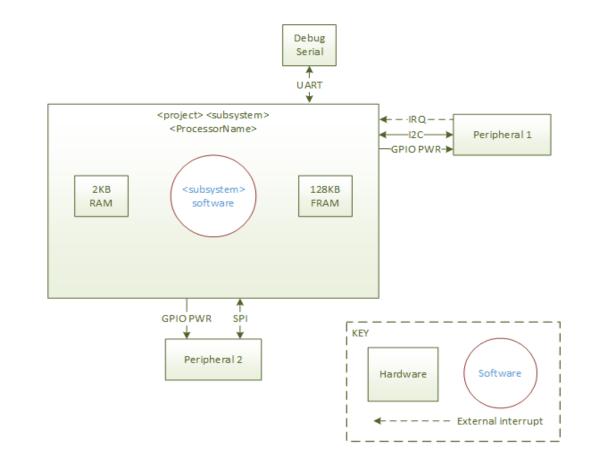
Example recalls from 2019 due to software defects

- Smiths Medical– Syringe pumps malfunctioning alarms and potential interruption of therapy
- Zimmer Biomet ROSA Brain Robotic surgery system software issue that incorrectly positions the robotic arm causing risk of patient injury
- Medtronic Remote Controllers for MiniMed insulin pumps – potential cybersecurity risk

Device recalls have significantly increased in recent years


- Software the largest driver of medical device recalls
- Increased complexity of devices and software

PRODUCT DEVELOPMENT PHASES


PHASE 1: REQUIREMENTS AND PLANNING

- Project Development Plan
- Software Development Plan
 - Determine software development life-cycle model Agile? Waterfall? Incremental?
 - Identify milestones and associated features
- Product Requirements Document
- Software Requirements Specification
 - Functions and capabilities
 - Security
 - Usability
 - Risk control measures

PHASE 2A: ARCHITECTURE & FEASIBILITY

- Map requirements to high-level architectural description of SW
 - Describe interfaces between software and internal/external components
- IEC 62304 terms
 - Software System top level, composed of 1 or more SW items
 - **Software Item** any identifiable part of a program, composed of 1 or more units
 - Software Unit the lowest level that is not decomposed
- Perform initial SW Risk Analysis

DEVICE CLASSIFICATION

FDA devices

- Class I lowest risk
 - Adhesive bandages, IV stand, glasses
- Class II moderate risk
 - Syringes, surgical masks, powered wheelchair
- Class III highest risk
 - Heart valves, implantable neuromuscular stimulator, breast implants

ISO 13485 devices

- Class I lowest risk
 - Eyeglasses, stethoscopes, crutches
- Class IIa low to medium risk
 - Syringes, surgical gloves, hearing aids, diagnostic ultrasound
- **Class IIb** medium to high risk
 - Surgical lasers, defibrillators
- Class III highest risk
 - Cardiovascular catheters, hip-joint implants, prosthetic heart valves

SOFTWARE SAFETY CLASSIFICATION

FDA software levels of concern

- **Minor**: failures unlikely to cause injury to patient or operator
- **Moderate**: failures could directly result in minor injury to patient or operator
- **Major**: failures could directly result in death or serious injury to patient or operator

IEC 62304 Software Safety Classification

- Class A: SW can't contribute to hazardous situation causing harm
- Class B: SW can contribute to hazardous situation and resulting harm is non-serious injury
- Class C: SW can contribute to hazardous situation and resulting harm is death or serious injury

RISK ANALYSIS

- Risk = combination of probability of occurrence and severity of harm
- Hazard analysis top-down approach
 - Required by ISO 14971 and the FDA
 - Identify hazards (sources of harm)
 - Define hazardous situations and associated harm

- Failure Modes and Effects Analysis (FMEA) – bottom-up approach
 - Identify failure modes
 - List effects of each failure
 - Estimate risk

• Estimate risk

risk –		Severity				
		S1:	S2:	S3: Serious	S4:	S5:
		Negligible	Minor	55. Serious	Critical	Catastrophic
Probability of Occurrence	P5: Frequent	R1	R2	R3	R3	R3
	P4: Probable	R1	R2	R3	R3	R3
	P3: Occasional	R1	R2	R2	R3	R3
	P2: Remote	R1	R1	R2	R2	R3
	P1: Improbable	R1	R1	R2	R2	R2

• Use Risk Controls to reduce risk

Copyright © 2021 Simplexity Product Development.

SW RISK ANALYSIS AND MITIGATION

Simplexity®

- Identify software items that could contribute to a hazardous situation
- Identify causes of those items contributing to a hazardous situation

- Risk Controls
 - For each case where a SW item contributes to a hazardous situation define a risk control measure (mitigations)
 - Risk control measures can be implemented in
 - hardware
 - software
 - working environment
 - user instruction
 - If the risk control measure is in software, add it to the software requirements specification

PHASE 2B/2C: DETAILED DESIGN

Detailed design

- Flesh out details of architecture divide items identified in the architecture into SW units with enough detail to allow implementation to proceed
- Design reviews before implementation

Unit implementation and testing

- Actual coding! Convert designs to source code and runnable binaries for test
- Always utilize source code control
- Code reviews before integration
- Software Integration and testing
 - Integrate SW units into progressively larger subsystems and test them

Feature complete by end of phase

PHASE 3: VERIFICATION AND TRANSFER

Release candidate software build

- Prepare candidate release for formal software verification
- Include release notes with known issues and fixed defects

Release software verification protocols

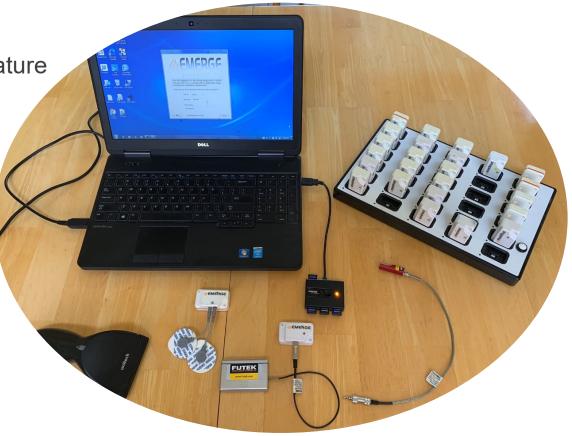
- Software Verification Testing
 - System-level testing of the software/firmware
 - Formal testing done by independent testers (NOT the engineers who wrote the code)
 - Any bugs found logged in issue tracking system
 - Performed along with system design verification testing

THE PRODUCT: AURA

- Initial target market: hospitals, clinics, long term care
- Patented core technology. The first automated point-of-care disinfection system, replacing the use of disinfectant wipes and sprays
- Broad material compatibility with broad-spectrum efficacy and zero chemical residue, no environmental impact, eliminates employee chemical exposure
- Plug-and-play set-up offers a fast and flexible, no installation required comprehensive turnkey solution

SIMPLEXITY'S ROLE

- Redesigning AURA for simplicity, improved reliability, scaled manufacturing cost reduction, noise reduction, and reduced product weight
- This will be an EPA registered product
- Full product design, prototyping, manufacturing support, & production ramp
- Embedded firmware, electrical, mechanical, systems, and quality engineering, supported by dedicated project managers and a New Product Introduction (NPI) team



THE PRODUCT

- The Electrodiagnostic Functional Assessment (EFA) Test objectively diagnoses and identifies the location, extent, nature and age of soft tissue injuries, including
 - Range of motion
 - Functional assessment
 - Pinch strength
 - Grip strength
 - Electromyography (EMG)

SIMPLEXITY'S ROLE

- Assist with development of the sensors and charger, including mechanical, electrical, firmware, and quality engineering
- Assist with providing process documentation such as the development plan, requirements specifications, architecture description, hazard analysis, FMEA, design and code reviews

BEST PRACTICES

- Use a phase-gate development process create a project plan, define requirements, develop the architecture, detailed design and implementation, verify and validate
- 2. Design your specifications so that they are easily tested for verification and validation, but still cover all safety aspects
- 3. Perform Software Risk Analysis along with Hazards Analysis during the architecture phase and identify software risk controls
- 4. Use design and code reviews to enforce company or industry design and coding standards
- 5. Test early and often automate unit and integration testing as much as possible

THANK YOU FOR ATTENDING!

Katie Elliott & Dorota Shortell Simplexity Product Development

SimplexityPD.com

info@simplexitypd.com

Sources:

- <u>Sterifre Medical</u>
- Emerge Diagnostics
- Toyota Article
- Quarterly Medical Device Recalls Graph
- Medical Device Recalls